@ https://ntrs.nasa.gov/search.jsp?R=20170002014 2020-05-09T09:57:44+00:00Z

Radiation Hardening by Software Techniques on
FPGAs: Flight Experiment Evaluation and Results

Andrew G. Schmidt and Matthew French
Information Sciences Institute
University of Southern California
{aschmidt,mfrench} @isi.edu

Abstract— We present our work on implementing Radiation
Hardening by Software (RHBSW) techniques on the Xilinx
Virtex5 FPGAs PowerPC 440 processors on the SpaceCube 2.0
platform. The techniques have been matured and tested through
simulation modeling, fault emulation, laser fault injection and
now in a flight experiment, as part of the Space Test Program-
Houston 4-ISS SpaceCube Experiment 2.0 (STP-H4-ISE 2.0).
This work leverages concepts such as heartbeat monitoring,
control flow assertions, and checkpointing, commonly used in
the High Performance Computing industry, and adapts them
for use in remote sensing embedded systems. These techniques
are extremely low overhead (typically <1.3%), enabling a 3.3x
gain in processing performance as compared to the equivalent
traditionally radiation hardened processor. The recently con-
cluded STP-H4 flight experiment was an opportunity to upgrade
the RHBSW techniques for the Virtex5S FPGA and demonstrate
them on-board the ISS to achieve TRL 7.

This work details the implementation of the RHBSW tech-
niques, that were previously developed for the Virtex4-based
SpaceCube 1.0 platform, on the VirtexS-based SpaceCube 2.0
flight platform. The evaluation spans the development and
integration with flight software, remotely uploading the new
experiment to the ISS SpaceCube 2.0 platform, and conducting
the experiment continuously for 16 days before the platform
was decommissioned. The experiment was conducted on two
PowerPCs embedded within the Virtex5 FPGA devices and
the experiment collected 19,400 checkpoints, processed 253,482
status messages, and incurred 0 faults. These results are highly
encouraging and future work is looking into longer duration
testing as part of the STP-HS flight experiment.

TABLE OF CONTENTS

1. INTRODUCTION .. .eiieieeensensansansesssscascascnnas 1
2. BACKGROUND AND RELATED WORKcccivenennn 2
3. DESIGN AND IMPLEMENTATION ...ccveeeenecenncens 3
T DAYZNS 91 67 ¥ (0) PSP 5
5. FUTURE WORK ..eitietiteatentencenceacancascanans 7
REFERENCES .« 1ttietetnteeeeencacasescncosasescacacnnes 7
BIOGRAPHY ..ciieiiiinrencensenssnssssoscsscascascnnans 8

1. INTRODUCTION

As the development of space-based instrument capabilities
grows, so too does the resulting data produced needing to
be processed, driving the demand for higher performance
processing. While radiation hardened and tolerant processors
exist, they are quickly outpaced by commodity processors.
The SpaceCube [1] project has been investigating how to
leverage commodity processing technology in space-based
systems, yet retain high levels of fault tolerance, for over a
decade. Utilizing FPGAs with embedded hardcore proces-

978-1-5090-1613-6/17/31.00 ©2017 IEEE

Thomas Flatley
Science Data Processing Branch
NASA Goddard Space Flight Center
thomas.p.flatley @nasa.gov

—STP-H4 On-Orbit Location---

- ISS SpaceCube Experiment — Mini (ISEM)

Image Credit: DoD Space Tast Program

Figure 1. Space Test Program-Houston 4’s ISS SpaceCube
Experiment 2.0 on the International Space Station

sors, the SpaceCube technology is aiming to provide 10x-
100x improvements in on-board computing power while
lowering the relative power consumption and cost.

We present our work on the implementation of Radiation
Hardening By Software (RHBSW) techniques on the embed-
ded PowerPC 440 hardcore processors found in the Space-
Cube 2.0’s Xilinx Virtex5 FPGA. Unlike traditional fault
mitigation techniques used on FPGAs, the embedded proces-
sor’s internal state cannot be readback and corrected through
conventional bitstream scrubbing techniques. Furthermore,
as there are only two PowerPC processors on each FPGA,
implementing Triple Module Redundancy (TMR) is not pos-
sible. Instead, we leverage a number of fault mitigation tech-
niques common in the high performance computing commu-
nity to instead leverage the performance of both processors in
parallel while only adding on average ~1.3% overhead.

This paper covers our maturation of the RHBSW techniques
and migrating from the SpaceCube 1.0’s Xilinx Virtex4 Pow-
erPC 405 processor [2] to the SpaceCube 2.0’s Xilinx Virtex5
PowerPC 440 processor. Furthermore, we have uploaded
and run the experiments on the Space Test Program-Houston
4-1SS SpaceCube Experiment 2.0 (STP-H4-ISE 2.0), which
can be seen in Figure 1. We report on our experiences as
we have moved through fault simulation and emulation to
laser testing, and now a brief flight experiment. Prior to
the decommissioning of the STP-H4 ISE 2.0 experiment, we
were successfully able to upload and run a synthetic bench-
mark application based on common earth science applications
on two PowerPC 440 processors while being monitored for
single event upsets (SEUs) by a newly designed third Xilinx
MicroBlaze soft core processor-based system-on-chip. Over

the course of the 16 day experiment we collected 19,400
checkpoints, processed 253,482 status messages, and in-
curred O faults. These results are highly encouraging and
future work is looking into longer duration testing as part of
the STP-HS flight experiment.

The rest of the paper is organized as follows. In Section 2 we
provide a background and related works for the SpaceCube
system and RHBSW fault mitigation techniques. Then we
present our design and implementation in Section 3. The
experimental setup and evaluation of our results is presented
in Section 4 followed by a conclusion and future work in
Section 5.

2. BACKGROUND AND RELATED WORK

While FPGAs are increasingly becoming more common
place in embedded systems and more recently high perfor-
mance computing systems [3], these systems are operating
in a much more controlled environment. FPGAs operating
in a space environment are susceptible to radiation effects,
such as Single Event Upsets (SEUs). The SpaceCube plat-
form does include the use of radiation tolerant FPGAs, but
also includes commodity FPGA devices. Using commodity
devices requires the use of fault mitigation techniques and
this section provide a background and related work on the
different techniques and capabilities used in the existing
platforms.

Fault Mitigation and Tolerance on FPGAs

While there have been fault tolerance and mitigation tech-
nique studies for space-based systems [4], these are largely
focused on the susceptibility of the FPGA fabric itself to
SEUs. With FPGA devices the configuration and logic plans
present the greatest challenge for fault mitigation; however,
there exist different techniques to detect, correct, and recover
for such faults. Bitstream scrubbing [5] is the most common
technique to readback and correct bit-flips and in most cases
can be done without impacting the running design, although,
there remains a possibility, based on the periodicity of the
scrubbing, where a fault may still occur. To account for these
errors, triple modular redundancy (TMR) [6] is often imple-
mented to immediately mask faults and configuration errors
until scrubbing can correct them. The design is augmented by
triplicating the computational element and inserting a voter to
determine if an error has occurred in one of the three identical
computations. A limitation of this approach is the additional
resources required when triplicating the design.

Unfortunately, bitstream scrubbing and TMR do not work
for the embedded PowerPC 440 processors as their internal
registers, such as cache contents and general purpose regis-
ters, are not readable by the Internal Access Configuration
Port (ICAP). Furthermore, there are only two PowerPC 440
devices embedded into each of the Virtex5 FX130 FPGAs,
which means triplication is not possible on a single FPGA
device. These same motivations led the development of the
RHBSW techniques applied to the SpaceCube 1.0’s PowerPC
405 and now drive the migration for the PowerPC 440.
This effort looks at the migration effort and the results of a
successful flight experiment on the STP-H4 ISE 2.0 platform.

SpaceCube Family

SpaceCube is a cross-cutting, in-flight reconfigurable Field
Programmable Gate Array (FPGA) based on-board hybrid
science data processing system developed at the NASA God-

Figure 2. SpaceCube 2.0 Engineering Model with Xilinx
Virtex5 FPGAs

dard Space Flight Center (GSFC) [1]. The goal of the
SpaceCube program is to provide 10x — 100x improvements
in on-board computing power while lowering relative power
consumption and cost. The SpaceCube design strategy in-
corporates commercial radiation-tolerant Xilinx Virtex FPGA
technology and couples it with an integrated upset detection
and correction architecture to provide reliable “order of mag-
nitude” improvements in computing power over traditional
fully radiation-hardened flight systems.

SpaceCube 1.0—The preliminary Radiation Hardening By
Software was developed for the SpaceCube 1.0’s Virtex4
FX60 FPGAs which included two PowerPC 405 embedded
processors. Starting in 2006 at GSFC, the SpaceCube system
developed after showcasing the computational power and
inherent reconfigurable advantages over typical space proces-
sors. The 1.0 platform was developed for the main avionics
for the experimental payload called the Relative Navigation
Sensors (RNS) [7]. A 1.0 platform was also added to the
International Space Station Experiment (MISSE-7) to study
the long term effects of radiation [8].

SpaceCube 2.0—The success of SpaceCube 1.0 led to the
development of SpaceCube 1.5, a Virtex5 based FPGA, but
remained backwards compatible with the SpaceCube 1.0
form factor. SpaceCube 2.0 was funded by NASA’s Earth
Science Technology Office (ESTO) and Satellite Servicing
Capabilities Office (SSCO). The 2.0 system leverages seven
years of board design, avionics systems design, and space
flight application experiences. Figure 2 shows the engineer-
ing model of the 2.0 system.

1SS SpaceCube Experiment 2.0

The ISE 2.0 experiment, which is a follow-on SpaceCube
v1.0 payload on MISSE-7, is installed on the DoD Space Test
Program Houston 4 (STP-H4) payload that was activated on
the ISS in August 2013. The purpose of the STP-H4 ISS
SpaceCube Experiment 2.0 is to demonstrate NASA Goddard
Space Flight Center (GSFC) SpaceCube 2.0 advanced hybrid
on-board science data processor technology in low Earth
orbit. The ISE 2.0 consists of a Power Unit, SpaceCube
v2.0 Engineering Model, a set of Earth-viewing high defi-
nition cameras, and instrumentation to detect and measure
terrestrial gamma-ray flashes from lightning, which serve
as data sources for the on-board processing demonstration.

The SpaceCube v2.0 EM is used to control the cameras and
FireStation instrument. The communication link between ISE
2.0 and the ISS goes through the main avionics of STP-H4,
which is a SpaceCube v1.0 system. The 2.0 system has the
following key technology elements:

o research critical to enable “next generation” missions by
providing the on-board computing power necessary to handle
future ultra-high data rate instruments and advanced mission
applications.

« successful demonstration of the ISE 2.0 experiment will
include the processing of high definition Earth imagery and
potentially unprecedented insight into the recently discovered
phenomena of terrestrial gamma ray flashes.

« successful completion of the ISE 2.0 processing experi-
ment will significantly increase the Technology Readiness
Level of the system and significantly reduce the risk for future
missions that wish to adopt this technology.

« successful completion of the ISE 2.0 gamma ray experi-
ment may provide ground-breaking scientific discoveries in
the fields of Heliophysics and Earth Science.

3. DESIGN AND IMPLEMENTATION

The RHBSW techniques developed and implemented include
checkpoint and restart, heartbeat monitoring, control flow
assertions, and watchdog timers. These various techniques
are implemented in software as supported library function
calls and pragmas that can be automatically inserted in the
user’s application. Furthermore, the techniques are software
programmable and can be adapted for the application to
provide a balance between software fault tolerance support
and performance overhead. This section briefly describes the
Xilinx implemented PowerPC 440 processor and then pro-
vides an overview of the software fault tolerance techniques
implemented on these processors. These techniques are then
applied on the SpaceCube 2.0 as part of the STP-H4 ISE
2.0 mission. The [2] provides a full description of originally
developed software fault tolerance techniques details.

Xilinx Virtex5’s PowerPC 440 Processor Details

The initial implementation of the software fault tolerance
techniques were implemented on the Xilinx Virtex4’s Pow-
erPC 405 embedded processor [2, 9] on the SpaceCube 1.0
architecture [1]. In this work, the techniques have been
migrated to the PowerPC 440 in order to achieve a higher
processor performance efficiency and access to more FPGA
resources. In order to migrate the fault mitigation strategies
and understand fault injection results, it is important to un-
derstand the variant of the PowerPC 440 in the Virtex5 FPGA
from Xilinx. The PowerPC 440 devices are embedded within
the FPGA and are 32-bit RISC, Harvard Architecture pro-
cessor. A block diagram of the PowerPC is shown below in
Figure 3. The caches are each 32KB, 64-way set-associative,
with 32-byte cache lines. The Memory Management Unit
(MMU) is software controlled, but is, generally, only used by
an operating system.

Table 1 lists the performance efficiency comparisons of
standard RadHard devices with the SpaceCube 1.0 and 2.0
systems. The Virtex5 PowerPC 440 device by the SpaceCube
2.0 is 25x more power efficient than the RAD750 device. By
extending the RHBSW techniques to the PowerPC 440, this
work brings an order of magnitude of processing capabilities
to systems that still need fault mitigation and can enable
applications to run within the SpaceCube platform to further
advance the scientific capabilities for earth science and other

128-bit Instruction Cache Data Cache 128-bit
PLB (32 KB) (32 KB) PLB
' il
|-Cache Controller ITLB |- MMU L DTLB | Load/Store Queues
64-entry ueut
l D-Cache Controller
Instruction Branch
Unit Unit KB
Target | || BHT DCR Bus
Address JTAG
Issue 0 l Issue 1 Cache Debug
Trace
l [
I 1
\J
Interrupt
C | Simpl Load and
omplex imple o Timers
Integer |=—| GPH Integer = GPR |- Store
Pipe File Pipe File Pipe
Clocks
[MAC I and
‘ J Pwr Mgmt

UG200_e1_01_022707

Figure 3. Block diagram of Xilinx Virtex5 PowerPC 440
processor

Table 1. Processor performance and power comparisons
with SpaceCube 2.0 PowerPC 440 based FPGA

Processor MIP Power MIP;

MIL-STD-1750A 3 15W 0.2
RAD6000 35 10-20 W 2.33
RAD750 300 10-20 W 20
SPARC V8 86 1w 86
LEON 3FT 60 3-5W 15
GSFC SpaceCube 1.0 3000 5-15W 400
GSFC SpaceCube 2.0 | 5000 | 10-20 W 500

missions. These performance opportunities set a firm base-
line for the allowed overhead and the expected performance
capabilities that the RHBSW techniques must provide.

Software Fault Tolerance Techniques

This section covers the designed and implemented tech-
niques, which can also be seen in Figure 4. These include
checkpoint an restart, heartbeat monitoring, control flow
assertions, and watchdog timers. In addition, we detail how
the techniques were updated to support the SpaceCube 2.0
and the SPT-H4 flight experiment.

Checkpoint and Restart—This work extends the checkpoint
and restart techniques common to the high performance com-

> Control Packets FPGAQ

€ Heartbeat Packets PowerPC 0
/ FPGA 1

PowerPC 1

Rad-Hard Micro-controller

Shared
FPGA 2 Memory
Bus

% PowerPC 2
|

To Flight
Recorder

D

\ FPGA N
;I PowerPC N

Access Table |

Figure 4. Diagram of the Radiation Hardening By Software
techniques running on the SpaceCube 2.0’s Virtex5 FPGAs

puting community and implemented in the initial PowerPC
405 designs by increasing the fidelity of the checkpoints, the
number of saved checkpoints, and provides a redundant retry
mechanism to restart the processor in the event a fault persists
through the checkpoint and restart procedure. A checkpoint
library has been developed that allows the application to
capture its current running state. A checkpoint consists
of pausing the running application, capturing the memory
segments of the processor’s registers, and writing the data to
storage. The flight experiment downlinks these checkpoints
in order to analyze the data and determine if there were any
data corruptions and validate the processor proceeds correctly
in the event of a fault. Checkpoint sizes and frequency
were selected to not overwhelm the downlink bandwidth, yet
provide sufficient state to allow the processor to recover when
a restart is required. To more thoroughly test the robustness,
a checkpoint of 60 seconds was selected with a size of 2
KB. Each checkpoint was stored in on-chip BRAM, although
more recent designs support off-chip DRAM to dramatically
increase the size and number of checkpoints supported during
the applications run-time. A library has been extended to
provide configurable and paramertizable support for an appli-
cation and its developer to use checkpoint and restart within
the RHBSW framework. The larger on-chip memory sizes on
the Virtex5 FPGA enable larger checkpoints and for multiple
checkpoints to be stored as compared to the original Virtex4
implementation.

Heartbeat Monitoring—Each processor is responsible for
sending heartbeat messages to the controller processor. The
frequency and size of the messages can be tuned to maintain
a low overhead. In our experiments the message size is
16-bytes with the capability of enqueuing 1024 heartbeat
messages. A message is sent at least every 2 seconds,
although more status messages can be enqueued based on
the activity of the processor. The processor sends heartbeat
messages to the controller to indicate status as it proceeds
through the computation. The messages provide a log of
the processors experimental state and identify if a particular
fault was detected by the processor, what the correcting action
was, and allows the controller verify the processor is making
progress in the computation. In the event a fault occurs
that makes the processor unresponsive or no longer sends
heartbeats, the controller can determine the appropriate action
to take in order to get the processor back in a functioning
state. For the purposes of the flight experiment, these mes-
sages from both PowerPC 440 processors are aggregated and
downlinked daily for analysis. In this work we extended the
messaging framework to support a hybrid multi-PowerPC and
MicroBlaze infrastructure, detailed in Section 3. Previously
a control/DUT interface was developed where one PowerPC
405 acted as the controlling device and the second PowerPC
405 was the device under test. By adding a scalable multi-
processor messaging system, the technique can more reliably
be implemented and tested on the PowerPC 440 and future
FPGA devices, such as the forthcoming Xilinx UltraScale+
Zynq Quad ARM A53-based FPGA.

Control Flow Assertions—Another technique is the use of
control flow assertions to enable the source code to perform
a self-check while running to determine if an upset has
corrupted the program counter, a loop counter, etc [10]. With
this method, each PowerPC 440 is capable of evaluating if
the assigned computation is progressing as expected. If the
processing element detects a control flow fault, the failure
status is communicated to the control processor using heart-
beats. The assertions are inserted at the source code level

through the use of pragmas with a developed utility that
checks for loop iterations, if-statements, and other user de-
fined locations. A second utility transforms these statements
into standard C code with control flow variables which are
checked during the run-time execution of the application. For
this work two forms of control flow assertions have been
implemented. The first ensures the program’s execution is
progressing as expected. An assertion is raised if any of
the control flow points are skipped or if the same point is
crossed consecutively. The second form of assertion monitors
the program to verify that the application is moving through
the different control flow points. Status messages are sent
via the heartbeat monitoring back to the controller processor
which can validate the status and respond accordingly. For
this effort no modifications to the tools or source-to-source
compiling is required, except to leverage the PowerPC 440’s
cross-compiler. The original application’s assertions used
throughout the simulation, emulation, and laser testing exper-
iments (described in Section 3) have been used in the flight
experiment to ensure continuity and identify if the control
flow logic can be adequately covered using these techniques.

Watchdog Timers—Each PowerPC 440 has a built in watch-
dog timer which can be enabled and cleared through software
function calls to allow each processor itself to restart. The
period and behavior of the watchdog timer can be controlled
from software. For these experiments the watchdog timer
is set to timeout after 5 seconds of not being cleared. Each
time a heartbeat message is generated the watchdog timer is
cleared. If the watchdog interrupt is disabled, or otherwise
interfered with, the watchdog timer will reset the PowerPC.
An application event heartbeat notifies the controller when
the processor is reset, so an error can be logged. The
original RHBSW techniques leveraged soft IP timers and
interrupt controllers in addition to its watchdog timer. This
work eliminates the dependence on the timer and interrupt
controller for the watchdog purpose and updates the library to
utilize the PowerPC 440’s watchdog timer libraries developed
and provided as part of the board support package by Xilinx.

Fault Testing

The RHBSW techniques have been developed and evaluated
across a number of different platforms and fault injection
studies. This includes the preliminary analysis as part of
the Xilinx Virtex4 ML410 development board, the Space-
Cube 1.0 breadboard, the Xilinx Virtex5 ML510 development
board, and now the SpaceCube 2.0 flight hardware as part of
the STP-H4 ISE 2.0 experiment. This work is the culmination
of the experiences and technology developed throughout the
past fault testing experiments.

Fault Emulation—The initial efforts to study and evaluate
SEUs and the PowerPC a fault emulator was developed
to simulate and then emulate, in real-time, bit-flips in the
PowerPC’s registers and cache [11]. This allowed us to
enhance the software fault tolerance and provide a baseline
to suspectability of registers and cache to upsets and resets.
From this early work we have adapted the mitigation tech-
niques to focus on the registers that have demonstrated a
higher sensitivity to faults, such as register r/4 which in
our experiments has led to a failure ~22.5% of the time a
bit-flip occurs that result in ~25% of the data errors in our
experiments [2].

Laser Testing—The fault emulation environment was then
expanded to include laser testing [12], where a laser allows
for precise control of the injection target to the micron level,

Virtex5 FX130 FPGA

MicroBlaze - Controller's SoC

vy]

v

Interrupt

Microblaze
(CTLR) [|Controller
2

UART On-Chip Control
Controller Memory Interface
2 2 /0

11

I

Processor Local Bus 2

.| Ppcaso
“| (out 0)

! !

PPC440
(DUT 1)

! !

Processor Local Bus 0

Processor Local Bus 1

IS S S

I 1 1

Interrupt Timer UART On-Chip
—» | Controller Controller|| Memory
0 0 0 0

On-Chip UART Timer Interrupt
Memory ||Controller 1 Controller |«
1 1 1

Figure 5. Block diagram of flight experiment’s integrated three system-on-chips consisting of two PowerPC 440 processors
as the devices under test and one MicroBlaze processor as the test controller and monitor

allowing injection of a single pulse at a specified X y coordi-
nate. Fault emulation (injecting faults into an actual machine
such as a prototype) provides an inexpensive solution to long
running fault injection campaigns, enabling users to collect
thousands of injections continuously over a period of days or
weeks. The laser test further affirmed the effectiveness of the
developed software fault mitigation techniques.

Flight Experiment

Ultimately, the focus of this work is to provide software
fault mitigation and demonstrate its capabilities as part of
a flight experiment. Our work initially was focused on
porting the RHBSW techniques from the SpaceCube 1.0
Virtex4 platform to the SpaceCube 2.0 Virtex5 platform.
Once the porting was completed, we were presented with
an opportunity to run on one FPGA on the SpaceCube 2.0’s
platform as part of the STP-H4 ISE 2.0 experiment became
available. The Goddard Space Flight Center team provided
the necessary infrastructure to first test the experiment on a
ground system with a simulated ISE interface in order to first
test the command and control between the primary FPGA of
the SpaceCube 2.0 and the Device Under Test FPGA.

Initially, a single PowerPC 440 was going to be made avail-
able to our experiments, meaning the control and monitoring
functionality would be handled outside of the FPGA. How-
ever, during the course of the project the entire FPGA was
made available to our experiment, meaning both PowerPC
440s would be allowed to run our RHBSW tests. As a result,
a third system-on-chip was developed to act as the controller
and handle the exchanges between the main FPGA and our
experiment’s FPGA within the SpaceCube 2.0 system. Since
both PowerPC 440 hard processors were configured to run
the fault mitigation experiments, a soft processor and system-
on-chip was implemented for this effort, seen in Figure 5.
While long-term plans are for the soft processor to exist in
a radiation hardened device, this experiment chose to use
a Xilinx MicroBlaze soft processor and system-on-chip in

order to keep the experiment within a single FPGA and not
require modifications to the remainder of the SpaceCube 2.0
system.

Finally, in order to evaluate the running system as part of
the flight experiment, the GSFC team developed an effi-
cient FPGA bitstream uploading procedure to reconfigure the
FPGA3 in their SpaceCube 2.0 system with out synthesized
and implemented design. While the technique of uploading
and reconfiguring an FPGA in space has already been demon-
strated, the complication in this case was how the FPGA3
configuration memory was stored. In order to assure the full
bitstream was uploaded without any transmission faults, the
compressed bitstream was split into 106-byte segments due to
upload bandwidth limitations. The entire upload procedure
took /8 hours, run overnight, and then verified using CRC
checksums. Once the upload completed of the ~360 KB
compressed bitstream, the GSFC team uncompressed and
deployed the bitstream into the SpaceCube 2.0’s nonvolatile
memory and initiated a reconfiguration of FPGA3 to start our
experiment.

4. EVALUATION

The flight experiment consists of running a synthetic bench-
mark application on the two embedded PowerPC 440’s on
one FPGA on the SpaceCube 2.0 system and downlinking
the results over the course of the experiment. A soft core
MicroBlaze processor is used to monitor the two PowerPCs
and provide control and status message handling to the rest of
the SpaceCube 2.0 platform. This section first describes the
benchmark and how it is used within the experiment, the over-
all setup of the RHBSW experiment within the SpaceCube
2.0 framework, and the collection of results and analysis of
the experiment.

SAR Computation

Global Init

File /O Y
»Record Init]-—

3 v A |
SAR Image (courtesy NASA JPL)

File l/O

Figure 6. Synthetic Aperture Radar benchmarks application
overview

e ———————
Initialization

Hyperspectral
Classifier

P o—— | —
Read bands

Insert bands into
BST

Find bands 110, 150,

210,213

Hyperspectralimage
(courtesy NASA
HyspIRI Workshop)

For all i,j classify

Write classifier

Figure 7. hyperspectral thermal image classification
benchmarks application overview

Synthetic Benchmark

To demonstrate the RHBSW techniques and determine if any
faults have occurred, we have combined the major elements
of a Synthetic Aperture Radar application and hyperspec-
tral image processing classifier to provide a controlled, yet
representative example of computation to run on the Xilinx
Virtex5 PowerPC 440 processors. From SAR we implement
the complex multiple and FFT kernels with data sizes small
enough to operate in block RAM, yet large enough to force
cache turn over. The use of smaller data sets allow for quicker
results checking and analysis so the effective compute vs.
error checking ratio is >90%. The computation flow of the
SAR application is illustrated in Figure 6. The hyperspectral
thermal image classifier application across different bands of
the input image (110, 150, 210, and 213), shown in Figure 7.
The hyperspectral code was part of a larger Autonomous On-
board Processing for Sensor Systems (AOPSS) [13] where

the FPGA could reconfigure and run different classifiers
based on the current location and needs of the application.
For this work both the SAR and hyperspectral classifier are
running in software on the Xilinx Virtex5’s PowerPC 440
processors. In this synthetic benchmark all of the general
purpose registers are used along with both instruction and
data caches. Most special purpose registers are not referenced
directly within the application; however, manipulating the
SPRs at runtime often results in undesirable side effects.
For example, disabling/enabling cacheable regions, debug
modes, and interrupts. No operating system was used in our
tests.

Experimental Setup

The synthetic benchmark application repeatedly performs the
1-dimensional FFTs and complex multiplication followed by
thresholding in order to mimic both SAR and hyperspectral
imaging, shown in Figure 8. At system startup a golden
output is calculated that is used to verify results during the
subsequent loop iterations of the synthetic benchmark. Dur-
ing the experiment if a data error or control flow assertion is
detected, the PowerPC logs the error MicroBlaze controller,
resets itself, recomputes golden outputs, and continues the
experiment. To check for silent data corruptions each time the
application records a new checkpoint, the data is packetized
by the MicroBlaze and sent to the control FPGA for down-
link. This allows us to analyze each checkpoint and replay
any portions of the applications on our ground testbed to trace
back the upsets.

These same procedures were in place during our simulation,
emulation, and laser testing so as to ensure uniform testing
and evaluation of the RHBSW techniques. The main differ-
ence with respect to the flight experiment was the ability to
use both PowerPCs as devices under test and leverage the
unused FPGA fabric to implement a MicroBlaze controller
to monitor the experiment. While a single upset would
only interfere with one of the two PowerPCs, having both
operational at the same time throughout the duration of the
experiment provided a larger cross section of sensitive bits
within the two processors to be evaluated.

The experiment relies on redundant controls and checks to
make sure all faults are detected, recorded, and downlinked
for analysis. The two PowerPC 440s send messages to the
MicroBlaze. In the event the PowerPCs fail, this is exactly
the data these experiments are interested in collecting, and
ideally correcting. If the MicroBlaze fails or an upset disables
the FPGA a watchdog timeout to the control FPGA within
the SpaceCube 2.0 platform will log the event and auto-
matically reconfigure the FPGA. As a result the MicroBlaze
and PowerPCs restart their experiment counters. When this
data is downlinked our offline analysis tools detect the reset.
Due to the SpaceCube 2.0’s existing FPGA fault mitigation
techniques, such as bitstream scrubbing, the analysis of these
failures falls outside of the scope of this flight experiment. As
explained in Section 2, our RHBSW techniques are designed
to complement existing FPGA fault mitigation techniques by
providing coverage to the PowerPCs which are not covered
through bitstream scrubbing.

Flight Test Results

The initial flight experiment was an add-on to the original
STP-H4 ISE 2.0 mission as the necessary resources to run
our supplemental experiment had become available towards
the end of the mission. As a result, it was understood
that our experimental run-time would be on the order of a

= —> Initialize]

o L

£

Threshold

o

2 FFT

L

—

©

g

Complex Multiply) e e

RN J

4 0

FFT Threshold
(S J

v

— Compare

SAR/Hyperspectral Computation

Initialize ‘

Golden Calculation

Figure 8. Computational overview of experimental
application running on PowerPCs during the flight
experiment

few months. Ultimately, due to a power switching unit trip
on the ISS that removed power to STP-H4, our experiment
was able to run for 16 days. During the course of the 16
days the experiment collected 19,400 checkpoints, processed
253,482 status messages, and incurred O faults. Each of the
systems performed as expected, and no silent data corruptions
were detected based on offline analysis of the checkpointed
data. The RHBSW techniques provided a quick and ef-
fective mechanism to add fault mitigation to our synthetic
benchmark application while only adding 1.3% overhead to
the system. This flight experiment was quite a fortunate
opportunity to further demonstrate the RHBSW techniques
and pave the way for a much longer duration experiment on a
possible SPT-HS mission.

5. FUTURE WORK

Moving forward this work is continuing to enhance and
develop more sophisticated RHBSW techniques. The orig-
inal development of this work and the migration of the
RHBSW techniques from the Virtex4 PowerPC 405 to the
Virtex5 PowerPC 440 were part of the forthcoming STP-
H5 SpaceCube-Mini flight experiment. The research pro-
vides flight validation of the STP-H5 SpaceCube-Mini and
advanced on-board processing capabilities for Earth Sci-
ence/atmospheric chemistry. These validated capabilities
increase the TRL of these technologies from TRL 6 to TRL 8
and reduce the programmatic risk of using these technologies
on future missions. Future Earth Science, Space Science,
Exploration and Satellite Servicing missions are able to im-
plement this enabling computing technology to perform com-
plex on-board functions that are previously limited to ground
based systems, such as on-board product generation, data
reduction, calibration, classification, event/feature detection,
data mining and real-time autonomous operations. Our goal
is to run these same experiments on the STP-HS5 SpaceCube-
Mini for a longer duration flight experiment.

In addition to the SpaceCube-Mini, work is underway to de-
termine future SpaceCube architecture, called SpaceCubeX.
These systems will likely migrate to the ARM A9 and A53-
based processing subsystems. While many of our RHBSW
techniques will rapidly port over to these new devices, we

are anticipating the need to run fault mitigation experiments.
As a result, an analysis of the simulation, emulation, and
flight infrastructure for the devices is required. Providing a
more broadly applicable and adaptable RHBSW framework
is a long-term goal and these flight experiments provide
invaluable data to help us all move forward.

REFERENCES

[1] T. Flatley, “Spacecube: A family of recon gurable
hybrid on-board science data processors,” in NASAIESA
Conference on Adaptive Hardware and Systems, June
2012.

[2] M. Bucciero, J. P. Walters, and M. French, “Software
fault tolerance methodology and testing for the em-
bedded powerpc,” in Proceedings of the 2011 IEEE
Aerospace Conference, march 2011, pp. 1-9.

[3] A. P. et al.,, “A reconfigurable fabric for accelerating
large-scale datacenter services,” in 41st Annual Inter-
national Symposium on Computer Architecture (ISCA),
June 2014.

[4] H. M. Quinn, P. S. Graham, M. J. Wirthlin, B. Pratt,
K. S. Morgan, M. P. Caffrey, and J. B. Krone, “A test
methodology for determining space readiness of xilinx
sram-based fpga devices and designs,” IEEE Transac-

tions on Instrumentation and Measurement, vol. 58,
no. 10, pp. 3380-3395, Oct 2009.

[5] B. Bridgford, C. Carmichael, and C. W. Tseng, “Single-
event upset mitigation selection guide (xapp987),”
march 2008.

[6] C. Carmichael, “Triple module redundancy design tech-
niques for virtex fpgas (xapp197),” july 2006.

[7] D. Petrick, “Application of spacecube in a space flight
system,” in Military and Aerospace Programmable Log-
ics Devices Conference, 2009.

[8] “Materials international space station experiment -
7, http://www.nasa.gov/missionpages/station/research/
experiments/653.htrnl.

[9] G. Allen, G. Swift, and G. Miller, “Upset characteri-
zation and test methodology of the PowerPC405 hard-
core processor embedded in xilinx field programmable
gate arrays,” in Radiation Effects Data Workshop, 2007
IEEE, july 2007, pp. 167 —171.

[10] R. Vemu and J. A. Abraham, “Ceda: control-flow error
detection through assertions,” in 12th IEEE Interna-
tional On-Line Testing Symposium (IOLTS’06), July
2006.

[11] M. Bucciero, J. P. Walters, R. Moussalli, S. Gao, and
M. French, “The PowerPC405 memory sentinel and
injection system,” in Proceedings of IEEE Symposium
on Field-Programmable Custom Computing Machines,
ser. FCCM ’11. IEEE Computer Society, 2011, pp.
154-161.

[12] J. P. Walters, K. M. Zick, and M. French, “A prac-
tical characterization of a nasa spacecube application
through fault emulation and laser testing,” in 2013
43rd Annual IEEE/IFIP International Conference on
Dependable Systems and Networks (DSN), June 2013,
pp- 1-8.

[13] M. French, “Autonomous, on-board processing for sen-
sor systems: Initial fault tolerance and autonomy re-
sults,” in Earth Science Technology Forum, 2011.

BIOGRAPHY

Andrew G. Schmidt is a Research
Lead and Senior Computer Scientist
at the University of Southern Califor-
nia’s Information Sciences Institute. He
is the technical lead of the Space-
CubeX project investigating heteroge-
neous computing platforms for next gen-
eration earth science missions. He re-
ceived his Ph.D. in electrical engineer-
ing from the University of North Car-
olina at Charlotte in 2011 investigating efficient utilization
of heterogeneous compute resources through static analysis
and runtime performance monitoring. He received his M.S.
and B.S. in computer engineering from the University of
Kansas in 2007 and 2005. His research interests include
heterogeneous and reconfigurable computing, fault tolerant
and resilient computing, high performance computing, and
embedded systems. Dr. Schmidt has over 30 publications in
the areas of reconfigurable computing based technology and
is a member of IEEE and ACM.

Matthew French is a Research Direc-
tor in the Computational Systems and
Technology group at USC/ISI where he
facilitates large scale, cross-discipline
research which spans the institute. In
this capacity, Mr. French serves as
the director of the SecUre and Robust
Electronics (SURE) center at ISI, which
conducts research and provides services
in hardware trust, security, reliability,
and resiliency. Mr. French also oversees the Reconfig-
urable Computing Group at ISI, which performs research in
application mapping, hardware / software co-design, CAD
tools, and front-end ASIC design. Mr. French has over
40 publications and 2 patents, and serves on the program
committee for several conferences in his field. Mr. French
holds M.E. and B.S. degrees in Electrical Engineering from
Cornell University.

Thomas Flatley is a Computer Engi-
neer at the NASA Goddard Space Flight
Center, and is currently Branch Head
of the Science Data Processing Branch.
Mr. Flatley’s current work includes the
coordination of embedded science data
processing technology development and
hardware accelerated science data pro-
cessing activities, serving as Principal
Investigator on multiple flight process-
ing experiments, with the primary goal of developing re-
configurable computing technology and hybrid systems for
flight and ground science data processing applications. He
is also a key member of the GSFC CubeSat/SmallSat technol-
ogy working group, manages numerous collaborations with
government, industry and academic partners, and serves as
liaison between technology developers and end users in the
science community. Mr. Flatley was named a Goddard Senior
Fellow in 2016.

